Let be the least common multiple of and , where for all and some . Then necessarily happens infinitely often.

*Proof.*

Assume a exists that divides for some . Note that we may assume so, because if such a doesn’t exist, we’re immediately done since every primedivisor of must then be smaller than or equal to and thus also be a divisor of . Let be any multiple of and . We then have:

Advertisements

## Leave a Reply